Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens

نویسندگان

  • Martin-Timothy O’Donoghue
  • Caspar Chater
  • Simon Wallace
  • Julie E. Gray
  • David J. Beerling
  • Andrew J. Fleming
چکیده

Bryophytes, the most basal of the extant land plants, diverged at least 450 million years ago. A major feature of these plants is the biphasic alternation of generations between a dominant haploid gametophyte and a minor diploid sporophyte phase. These dramatic differences in form and function occur in a constant genetic background, raising the question of whether the switch from gametophyte-to-sporophyte development reflects major changes in the spectrum of genes being expressed or alternatively whether only limited changes in gene expression occur and the differences in plant form are due to differences in how the gene products are put together. This study performed replicated microarray analyses of RNA from several thousand dissected and developmentally staged sporophytes of the moss Physcomitrella patens, allowing analysis of the transcriptomes of the sporophyte and early gametophyte, as well as the early stages of moss sporophyte development. The data indicate that more significant changes in transcript profile occur during the switch from gametophyte to sporophyte than recently reported, with over 12% of the entire transcriptome of P. patens being altered during this major developmental transition. Analysis of the types of genes contributing to these differences supports the view of the early sporophyte being energetically and nutritionally dependent on the gametophyte, provides a profile of homologues to genes involved in angiosperm stomatal development and physiology which suggests a deeply conserved mechanism of stomatal control, and identifies a novel series of transcription factors associated with moss sporophyte development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary crossroads in developmental biology: Physcomitrella patens.

The moss Physcomitrella patens has recently emerged as a powerful genetically tractable model plant system. As a member of the bryophytes, P. patens provides a unique opportunity to study the evolution of a myriad of plant traits, such as polarized cell growth, gametophyte-to-sporophyte transitions, and sperm-to-pollen transition. The availability of a complete genome sequence, together with th...

متن کامل

Moss – An Innovative Tool for Protein Production

The complete sequencing of the human genome has significantly increased the number of pharmaceutically important proteins (“biopharmaceuticals”) to be produced at large scale. As this tendency is expected to continue, production capacity of biopharmaceuticals has become a strategic issue for the pharmaceutical industry. Mammalian cells such as those of baby hamster kidney and Chinese hamster ov...

متن کامل

Alternation of generations - unravelling the underlying molecular mechanism of a 165-year-old botanical observation.

Characteristically, land plants exhibit a life cycle with an 'alternation of generations' and thus alternate between a haploid gametophyte and a diploid sporophyte. At meiosis and fertilisation the transitions between these two ontogenies take place in distinct single stem cells. The evolutionary invention of an embryo, and thus an upright multicellular sporophyte, in the ancestor of land plant...

متن کامل

Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens.

Dehydration tolerance was an adaptive trait necessary for the colonization of land by plants, and remains widespread among bryophytes: the nearest extant relatives of the first land plants. A genome-wide analysis was undertaken of water-stress responses in the model moss Physcomitrella patens to identify stress-responsive genes. An oligonucleotide microarray was used for transcriptomic analysis...

متن کامل

Eight types of stem cells in the life cycle of the moss Physcomitrella patens.

Stem cells self-renew and produce cells that differentiate to become the source of the plant body. The moss Physcomitrella patens forms eight types of stem cells during its life cycle and serves as a useful model in which to explore the evolution of such cells. The common ancestor of land plants is inferred to have been haplontic and to have formed stem cells only in the gametophyte generation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2013